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Measurement and Modelling of

Radiative Coupling in Oscillator Arrays
Robert A. York, Member, IEEE, and Richard C. Compton, Member, IEEE

Abstract—Arrays of coupled oscillators can be used for power-

combining at microwave and millimeter-wave frequencies, and

have been successfully demonstrated with a variety of devices.

Such arrays have also recently been mode-locked for pulse gener-

ation, and can be configured for phase-shifterless beam-scanning.
The nonlinear theory of coupled-oscillator phase dynamics de-

pends crucially on the parameters describing the coupling be-

tween oscillators. Methods for experimental characterization of

these parameters are described here, and simple models are
developed which reproduce the measurements quite well. The
models apply to radiative coupling and the effects of external
reflectors which are sometimes used for stabilization. The theory
is verified with a two-oscillator system.

I. INTRODUCTION

T HE INCREASING demand for high power, high

efficiency solid-state sources in the millimeter-wave

range has spurred interest in new technologies for power-

combining, using quasi-optical techniques [1]–[2]. In a

quasi-optical power-combining array, a large number of

devices are integrated in a planar radiating structure, and

the power-combining takes place in free-space. Such arrays

can accommodate a large number of devices for high-power

generation, and very high combining efficiencies are possible.

One of the earliest reported quasi-optical power-combiners

used a small array of coupled-oscillators, where each oscil-

lator was connected to a patch antenna, and mutual coupling

between the antennas induced mutual injection-locking [3].

A circuit analysis of such “interjection-locked” arrays was

described at about the same time [4]. Since then, the coupled-

oscillator array concept has been further developed, and arrays

using Gunn diodes and FETs have been successfully demon-

strated [5]–[7]. In addition, arrays of coupled millimeter-wave

sources have been found to possess other interesting and

potentially useful properties, such as mode-locking for pulse

generation [8]–[9], and phase-shifterless beam-scanning [4].

These arrays are inherently suited to monolithic integration,

and will find application in systems where compact and

lightweight components are required.
In a previous paper [5], a theory describing the nonlinear

dynamics of oscillator arrays was derived and used to examine

the existence and stability of various modes of the system,
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which are characterized by a common frequency and particular

phase relationship amongst the oscillators. It was found that

the strength and phase angle of the mutual coupling has a

profound effect on the steady-state solution, and therefore it

is important to accurately characterize these parameters. This

paper describes the measurement and modelling of radiative

coupling in quasi-optical oscillator arrays. Two different mu-

tual coupling mechanisms are identified, and it is shown that a

very simple model adequately reproduces the experimental ob-

servations for some cases of practical interest, using common

active patch oscillator circuits [5], [6], [17].

11. COUPLED OSCILLATOR THEORY

The theory of coupled oscillators has attracted considerable

attention in recent years, as it appears to model many diverse

natural phenomena quite well [ 10]–[ 11]. Through this research

it has been learued that the system dynamics are not greatly in-_

fluenced by the particular nonlinearities within each oscillator,

provided this nonlinearity is sufficient to produce sinusoidal

oscillations [11 ]. This allows us to select the simplest possible

model for each oscillator. A popular choice is the Van der Pol

model [12], which cart be derived by representing the device

by a lumped negative resistance (conductance) embedded in a

series (parallel) resonant circuit. The impedance of the device

depends nonlinearly on the amplitude of oscillation. To ensure

nearly sinusoidal oscillations near the resonant frequency of

the embedding circuit, it is assumed that the Q-factor is at

least Q > 10. Allowing for the possibility of an externally

injected signal Vinj, the sinusoidal Vau der Pol model can be

written as

dV

dt [ 1—=V %(A: – IV12) +.7~0 + ~% (1)

where p is a device-dependent nonlinearity parameter, V is

the complex output voltage of the oscillator, Q is the Q-factor
of the embedding circuit, and A. and tio are the free-running

(V&j = O) amplitude and frequency,

To extend this model to a system of coupled oscillators,

we assume that the mutual interaction between oscillators i

and j in the system can be described by a complex coupling

coefficient, written as

In most arrays, reciprocity will hold so that ~ij = fi~,. In a

system of N oscillators, the injected signal at the ith oscillator
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will be

j=]

where Vj represents the output signal of the jt h oscillator.

Note that Mii (the self-interaction term) is not necessarily

zero-this will be discussed later. Using this expression and

the Van der Pol model (1), a set of coupled, nonlinear differ-

ential equations describing the amplitude and phase dynamics

of the system have been derived [9]. If the mutual coupling

between oscillators is not too strong, then we can igrmre the

amplitude dynamics and concentrate our attention on the phase

dynamics. For a system of N oscillators with free-running

frequencies w~ and free-running amplitudes Ai, the phase

distribution will evolve in time according to [5, 9]

. sin (@~j + Oi – Oj) i=l,z,...,iv (2)

where 19;is the instantaneous phase of oscillator i (and hence

dOi /dt represents the instantaneous frequency). Under certain

conditions all of the oscillators can become synchronized

to a common frequency w, so that dOi/dt = u for all i.

Furthermore, the phase relationship between all oscillators

will remain constant in this locked state, and so we write

Oi– @j = & – dj, where the rj~ are time-independent constants

describing the relative phase distribution in the steady-state,

and can be found by solving

Noting that one of the phase variables is arbitrary and can

be set to zero, we see that for a given set of free-running

and coupling parameters there are generally 2N – 1 different

sets of phases, or modes, which satisfy (3) in the steady-state.

However, few of these modes are stable. Mode stability can

be analyzed using a perturbation analysis [5], [13], in which

(2) is linearized around some particular solution. If ~ is a

solution vector of (2), we perturb this solution by a small

amount 8~ = ~~ + 6~, and find an evolution equation for the

6~ as

. Cos (@~j + Pi– 8j) i=l,2, . . ..jv (4)

which can be written as a matrix equation

:[6] = [M][6] (5)

where M is an N x lV matrix. One of the eigenvalues of

this matrix will have a zero real part, since one of the phase

variables is arbitrary. In order that the perturbation 6 not grow

without bound, the remaining eigenvalues of M must have
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Fig. 1. Two classes of radiative coupling in oscillator arrays. (a) Free-space
and surface-wave coupling, which are nearly always present. (b) Quasi-optical
reflector, forming a Fabry-Perot cavity. The reflector affects the inter-oscillator

coupling and also the behavior of each individual oscillator in the absence of

coupling. Both types can be accounted for with simple models.

negative real parts [13]. This additional constraint is usually

restrictive enough to remove all but one of the solutions to (3).

Limited space in this paper does not permit elaboration on the

important topic of mode stability, and this will be discussed

in a future paper. The above analysis is sufficient for wlhat

follows.

III. COUPLING MECHANISMS AND MEASUREMENT

From (2) it is clear that both the magnitude and phase of

the coupling coefficient, ~;j, will have an important influence

on the phase dynamics of the system. In a typical oscillator

array this mutual coupling can take several forms. Two of

these are almost always present in planar radiating arrays:

free-space interactions, and coupling through surface-waves

propagating in the dielectric substrate (Fig. 1(a)). The latter

is significant for electrically thick substrates. These radiative

coupling mechanisms have been characterized both theoreti-

cally and experimentally for many types of planar rqdiators,

such as the patch antenna [ 14]–[ 15]. The strength and phase of

this interaction is a strong function of the element separation.

This is not always desirable in an oscillator array, since the

element spacing also determines the radiation pattern of the

array and hence cannot be set arbitrarily.

Another important situation is depicted in Fig. 1(b), where

the array is placed in an open quasi-optical cavity. Open

resonators can have very high Q-factors, and hence are useful

for frequency stabilization. The particular cavi~ shown in

Fig. 1(b) is created by the partially reflecting mirror (such

as a dielectric sheet) and the ground plane of the array. ‘The

individual oscillators couple to a set of cavity modes, which

are the vehicle for interaction [1]. This type of coupling can

thus be controlled by the reflectivity, shape, and position of the

mirror. Alternative coupling schemes can also be used, such as

a planar transmission-line circuit for adjacent oscillators. The

latter is a more flexible design alternative than the proxitnity

coupling scheme, however it may be undesirable if substrate

real-estate is scarce. In the remainder of this paper we restrict

our attention to the radiative coupling schemes shown in Fig. 1.

An elegantly simple technique has in fact already been

described for the experimental characterization of free-slpace
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Fig. 2. Setup for coupling measurements. A vertical ground plane images a

single oscillator, simulating two identical coupled oscillators. The oscillation
frequency is then monitored while the metal sheet is moved away from the

oscillator. Thk shift is related to the coupling coefficient iu (7).
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Fig. 3. Illustration of the imaging of an oscillator in the two principal
radiation planes, for linearly polarized antennas. The arrow indicate the
direction of current on the planar antennas.

oscillator coupling [16]. As shown in Fig. 2, a single planar

oscillator is imaged by a ground plane, thus simulating two

identical, coupled oscillators. The coupling is controlled by

adjusting the spacing bet ween the oscillator and the mirror.

As the mirror position is changed, the output frequency of

the system also changes, and this frequency shift can be

related to the coupling coefficient through equations (3). For

two identical, frequency-locked oscillators (i.e., UI = LJ2 ~

WO, Al = Az) with ~M = filz = Aexp (–J@) and ~11 =
~22 = O, (3) gives, in the steady-state,

(6)

where Ad = @Z– 41, the relative phase difference between

the two oscillators. Depending on the orientation of the two
oscillators, either in-phase or out-phase oscillators are simu-

lated in this technique, as illustrated in Fig. 3 for an oscillator

with a linearly polarized antenna. For both cases, either of

equations (6) can be used to get

(7)

where A’ = A/2Q and A f = f – fo. The frequency shift is

thus a function of the coupling coefficient only, which in turn is

a function of the oscillator separation z as indicated in (7). The

plus-sign applies for H-plane coupling (Aq$ = fi), while the
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Fig. 4. Measured frequency shift versus oscillator separation (in wave-

lengths) for (a) H-plane coupling, and (b) E-plane coupling. An X-band Gumr
diode/patch antenna oscillator was used. The theory curve is calculated using
the simple model (8) as described in the text.

minus-sign applies for E-plane coupling (AO = O). Equation

(7) is similar in form to (9) in [21], which was derived by

other methods.

Two typical experimental results are shown in Fig. 4 for an

active patch antenna with an integrated X-band Gunn diode

[6], [16]. In each of the graphs a theoretical curve has been

plotted for comparison. These have been calculated using a

simple model in which the coupling signal is described by the

far-field approximation for the antenna. In this approximation

the field strength is proportional to 1/r, where r is the distance

from the antenna. The phase of the signal is calculated using

the free-space propagation constant, k. = W./c, where c is the

speed of light. Near-field effects can be partially accounted

for with an additional phase term, q, which is empirically

determined [21]. If z is taken as the oscillator separation, this

simple model for the free-space coupling is written as

c
A’(x) = G and O(z) = kl)z + p (8)

where C and p are fitted parameters and are dependent on the

polarization of the coupling. For our active patch design, the

experimental curves in Fig. 4 were found to be well described

by

E – plane: C’ = 0.013 p = 60°

H – plane: C = 0.010 p = –80°
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This simple model appears to work quite well for element

spacings of a half-wavelength or more (a similar conclusion

was reached in [21]). Note also that for typical array spacings

of z < A, the measurements indicate that significant mutual

coupling will exist beyond nearest neighbors. However, it is

possible that the nearest neighbors could effectively screen out-

lying oscillators and reduce this influence. Thus far, theoretical

predictions based on nearest-neighbor coupling have compared

very favorably with array measurements; these results will be

presented in a future paper.

The excellent agreement for the simple model above sug-

gests that a similar description of the coupling due to a

partially reflecting mirror might be possible. In this case, the

interaction is modelled as a simple plane-wave reflection from

the mirror, which is governed by the Fresnel equations [18].

This is depicted by arrows in Fig. l(b) for a flat sheet reflector

(multiple reflections are ignored). If we define the path length

1 = 2~~, where d is the distance between the

reflector and the oscillator array, then the simple coupling

model is

O(Z> d) = kol + ~ + m(o) (9)

where 17(0) is the complex reflection coefficient of the re-

flector, which is a function of the angle of incidence O =

tan– 1(z/2d) as well as the orientation of the oscillators

(polarization of the field). G(O) is the relevant gain function

(E- or H-plane) of the antenna. Again, C and p are empirically

determined quantities. A corollary of this model is that each

oscillator will also receive a portion of its own output signal,

which is reflected directly back from the mirror. Such “self-

injection-locking” is governed by Adler’s equation [19], which

reduces to an equation of the form (7). This self-interaction

term is modelled by a nonzero ti,i; , which we allowed for in

writing (2).

To explore the validity of this approach, experiments were

performed using a single active patch oscillator, with a 1

inch thick dielectric sheet reflector (Cr = 4.0) mounted on

an adjustable stand above the array. A typical measurement

of the frequency variation versus reflector position for an

X-band oscillator is shown in Fig. 5. The them-y curve is

calculated using the simple model (9), with x = 6 = O,

and follows the measurements surprisingly well. This is a

useful result, considering the alternative methods for modelling

the effects of external reflectors. Rigorously, the presence

of the reflector affects the driving-point impedance of the

antenna, and this in turn forces a change in the oscillator

frequency. This driving point impedance can be calculated by

a straightforward but lengthy and computationally expensive

mode-matching procedure [1]. The simple model presented

here will be especially useful in computer simulations of array
dynamics, where computational efficiency is important.

In summary, mutual coupling in oscillator arrays with

the (optional) presence of a reflector can be modelled as

a superposition of three effects: a direct signal from the

neighboring oscillator (8), a signal from the neighbor due

to the reflector (9), and the self-injection-locking described

-40 t 1 I 1 i
0.0 0.50 1.0 1.5 2.0

Reflector spacing, cflk

Fig. 5. Frequency shift as a dielectric slab ( 1“ thick, e, = 4) is moved above

a Gunn/patch oscillator operating at 7.635 GHz. The effects of the reflector carr

be described by including a “self-interaction” term in the coupled-oscillator

theory, and can be modelled by a simple expression.

above. Depending on the particuhu- reflector used and/or the

proximity of neighboring oscillators, one of these effects may

dominate the others.

IV. Two COUPLED, NONIDENTICAL OSCILLATORS

The simplest application of the coupled-oscillator theory and

coupling models described above is for the case of two coupled

oscillators. This is also one of the few situations in which an

exact analytical result can be found, and has been considered

by various authors using many different techniques [21]–[~!3].

We will consider two oscillators which interact by direct, free-

space mechanisms, as described by (8). Two simultantxms

equations must be solved, which are found from

[
W=wl l–}’~sin(@– A4) 1

[W=W2 l–A’~sin(@ +6@) 1

(3) as

(10)

The steady-state phase-shift which satisfies (10) is found as

Ad= 2 tan-l
[J

a+ a2 + b2 – AW2

b+Aw 1
(11)

where

a = A’ cos @(wzA1/Az + WIA2/i41)

b = A’ sin @(w2A1JA2 – w1A2/A1

and thus there are two possible solutions for this system. The

solutions of (10) are subject to the stability condition

[
wz~ cos(il + A@)

1+ wl~ cos (@ – Ad) >0 (12)

and this determines the proper sign in (11). The synchronized

frequency can then be found by substituting back into (10).

In the case of instantaneous coupling (I3? = O) this equation
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Fig. 6. A selection of radiation patterns for the two-oscillator system, with different oscillator separations. (a) x = 15 mm, (b) x = 30 mm, (c) z = 45 mm,

and (d) z = 60 mm. Solid line is the measured pattern, and the dotted line is theory. The oscillators had measured free-running frequencies of approximately

10.8 GHz, and similar amplitudes. Good agreement in the placement of lobes and nulls indicate an accurate prediction of the phase shift.

reduces to

which is the same result derived previously by Kaplan and

Radparvar [22].

To illustrate the behaviour of the system, consider the

case of two oscillators with identical free-running parameters,

WI = W2 and Al = AZ. Equations (11) and (12) become

cos @sin Aq5 = O and

Cos @CosAd >0

giving the solution

{
A~ = 0’

–7r/2 < @ < lr/2

r, 7r/2 < @ < 3T/2

and thus the two modes of operation are either in-phase or out-

of-phase. This would be clearly evident from a measurement

of the radiation pattern.

This theory was tested with a two-oscillator array. using

an X -band active patch oscillator as described previously.

The first step involved an experimental determination of the

parameters C and q in (8). The oscillators were then mounted

on adjustable carrier so that the spacing and hence coupling

could be continuously varied. The array was constructed

for H-plane coupling. Several radiation pattern measurements

were performed for different element spacings, and a few

of these are shown in Fig. 6. The measurements support

the theoretical observation of two distinct modes, which are

approximately in-phase or out-of-phase. For each case the free-

running parameters of each oscillator were carefully measured,

and this information, along with the coupling model (8), was

used to predict the final frequency and phase shift. Theoretical

radiation patterns have been plotted for comparison in Fig.

6, with excellent agreement theory and experiment regarding

the number and placement of lobes and nulls. Discrepancies

in magnitude, especially at large angles from broadside, are a
result of using a simplified patch antenna radiation model [20]

for the theoretical pattern.

The measured radiation patterns were used to find the

actual phase shift between the oscillators, and the differences

between theory and experiment for all of the measurements

has been plotted versus oscillator spacing in Fig. 7. The

differences between theory and experiment for the oscillation

frequency are also shown. This figure clearly shows that the

simple coupling model (8) and the oscillator array theory

(2) accurately describe the physical situation, except at small

element separations. At such small element spacings, the far-

field approximation used in (8), and the assumption of weak
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Oscillator Separation, XA

Fig. 7. Comparison of theory and experiment for both frequency and phase in
the two oscillator system. Solid dots indicate the magnitude of the difference

between theoretical and experimental phase shifts. Open triangles indicate
the percent discrepancy between predicted and measured output frequency

of the system. Good agreement is observed for spacings on the order of a
half-wavelength or more.

coupling used in (2), are no longer valid. In such cases the

coupling parameters can be found empirically, and oscillator

amplitude dynamics must be accounted for [9].

V. CONCLUSIONS

A successful theory of coupled-oscillator arrays relies on

a description of both the individual oscillators and the me-

chanics of interelement coupling. Using a theory based on

the Van der Pol oscillator and a previously described imaging

technique, mutual coupling between microwave oscillators can

be experimentally determined. It was found that a very simple

model for direct, radiative coupling between oscillators can

be fitted to experimental data, and that subsequent predictions

based on this model are accurate for oscillator separations of a

half-wavelength or more. This model was extended to account

for the external reflecting elements which are sometimes

used in quasi-optical cavities. This led to the introduction

of a “self-interaction” term, which accounts for the effects

of the reflector on a single oscillator. The coupled-oscillator

theory and radiative models were tested with two nonidentical

oscillators, and very good agreement was observed between

theory and experiment. The models developed here will be

instrumental in future simulations of large array dynamics,

where computational efficiency is paramount.
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