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Measurement and Modelling of
Radiative Coupling in Oscillator Arrays

Robert A. York, Member, IEEE, and Richard C. Compton, Member, IEEE

Abstract—Arrays of coupled oscillators can be used for power-
combining at microwave and millimeter-wave frequencies, and
have been successfully demonstrated with a variety of devices.
Such arrays have also recently been mode-locked for pulse gener-
ation, and can be configured for phase-shifterless beam-scanning.
The nonlinear theory of coupled-oscillator phase dynamics de-
pends crucially on the parameters describing the coupling be-
tween oscillators. Methods for experimental characterization of
these parameters are described here, and simple models are
developed which reproduce the measurements quite well. The
models apply to radiative coupling and the effects of external
reflectors which are sometimes used for stabilization. The theory
is verified with a two-oscillator system.

I. INTRODUCTION

HE INCREASING demand for high power, high
efficiency solid-state sources in the millimeter-wave
range has spurred interest in new technologies for power-
combining, using quasi-optical techniques [1]-[2]. In a
quasi-optical power-combining array, a large number of
devices are integrated in a planar radiating structure, and
the power-combining takes place in free-space. Such arrays
can accomodate a large number of devices for high-power
generation, and very high combining efficiencies are possible.
One of the earliest reported quasi-optical power-combiners
used a small array of coupled-oscillators, where each oscil-
lator was connected to a patch antenna, and mutual coupling
between the antennas induced mutual injection-locking [3].
A circuit analysis of such “interjection-locked” arrays was
described at about the same time [4]. Since then, the coupled-
oscillator array concept has been further developed, and arrays
using Gunn diodes and FETs have been successfully demon-
strated [5]-[7]. In addition, arrays of coupled millimeter-wave
sources have been found to possess other interesting and
potentially useful properties, such as mode-locking for pulse
generation [8]-[9], and phase-shifterless beam-scanning [4].
These arrays are inherently suited to monolithic integration,
and will find application in systems where compact and
lightweight components are required.
In a previous paper [5], a theory describing the nonlinear
dynamics of oscillator arrays was derived and used to examine
the existence and stability of various modes of the system,
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which are characterized by a common frequency and particular
phase relationship amongst the oscillators. It was found that
the strength and phase angle of the mutual coupling has a
profound effect on the steady-state solution, and therefore it
is important to accurately characterize these parameters. This
paper describes the measurement and modelling of radiative
coupling in quasi-optical oscillator arrays. Two different mu-
tual coupling mechanisms are identified, and it is shown that a
very simple model adequately reproduces the experimental ob-
servations for some cases of practical interest, using common
active patch oscillator circuits [5], [6]. [17].

II. COUPLED OSCILLATOR THEORY

The theory of coupled oscillators has attracted considerable
attention in recent years, as it appears to model many diverse
natural phenomena quite well [10]-[11]. Through this research
it has been learned that the system dynamics are not greatly in-
fluenced by the particular nonlinearities within each oscillator,
provided this nonlinearity is sufficient to produce sinusoidal
oscillations [11]. This allows us to select the simplest possible
model for each oscillator. A popular choice is the Van der Pol
model [12], which can be derived by representing the device
by a lumped negative resistance (conductance) embedded in a
series (parallel) resonant circuit. The impedance of the device
depends nonlinearly on the amplitude of oscillation. To ensure
nearly sinusoidal oscillations near the resonant frequency of
the embedding circuit, it is assumed that the )-factor is at
least @@ > 10. Allowing for the possibility of an externally
injected signal V;,,, the sinusoidal Van der Pol model can be
written as

av

= %(A% — V]2 + wo| + %Vm (m)
where p is a device-dependent nonlinearity parameter, V' is
the complex output voltage of the oscillator, ) is the Q-factor
of the embedding circuit, and Ay and wy are the free-running
(Viny = 0) amplitude and frequency,

To extend this model to a system of coupled oscillators,
we assume that the mutual interaction between oscillators 7
and j in the system can be described by a complex coupling
coefficient, written as

Koy = Ay exp (—3®,,)

In most arrays, reciprocity will hold so that x;; = £,,. In a
system of IV oscillators, the injected signal at the sth oscillator
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will be

N
= Zm, V.
=1

where V; represents the output signal of the jth oscillator.
Note that k;; (the self-interaction term) is not necessarily
zero—this will be discussed later. Using this expression and
the Van der Pol model (1), a set of coupled, nonlinear differ-
ential equations describing the amplitude and phase dynamics
of the system have been derived [9]. If the mutual coupling
between oscillators is not too strong, then we can ignore the
amplitude dynamics and concentrate our attention on the phase
dynamics. For a system of N oscillators with free-running
frequencies w; and free-running amplitudes A;, the phase
distribution will evolve in time according to [5, 9]

d0i (O] N Aj
‘% =Wy E;/\”I

-sin(<I>z~j+0,~—9j) 1=1,2,---,N 2)

where §; is the instantaneous phase of oscillator ¢ (and hence
df; /dt represents the instantaneous frequency). Under certain
conditions all of the oscillators can become synchronized
to a common frequency w, so that df;/dt = w for all i.
Furthermore, the phase relationship between all oscillators
will remain constant in this locked state, and so we write
8;—0; = ¢; —¢;, where the ¢; are time-independent constants
describing the relative phase distribution in the steady-state,
and can be found by solving

1_ .7

W= 2 a,°

1] +¢z ¢J)

i=1,2,-~,N ?3)

Noting that one of the phase variables is arbitrary and can
be set to zero, we see that for a given set of free-running
and coupling parameters there are generally 27V~! different
sets of phases, or modes, which satisfy (3) in the steady-state.
However, few of these modes are stable. Mode stability can
be analyzed using a perturbation analysis [S], [13], in which
(2) is linearized around some particular solution. If fis a
solution vector of (2), we perturb this solution by a small
amount ; = 6; + 6;, and find an evolution equation for the
51‘ as

= 65)

d& Ww; N Aj
il Z—Q‘;)\uh—i(@

cos (@ +8;,-0;) i=12,--- N (¥

which can be written as a matrix equation

d
S =1

where M is an N x N matrix. One of the eigenvalues of
this matrix will have a zero real part, since one of the phase
variables is arbitrary. In order that the perturbation é not grow
without bound, the remaining eigenvalues of M must have

M][6] )
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Two classes of radiative coupling in oscillator arrays. (a) Free-space
and surface-wave coupling, which are nearly always present. (b) Quasi-optical
reflector, forming a Fabry-Perot cavity. The reflector affects the inter-oscillator
coupling and also the behavior of each individual oscillator in the absence of
coupling. Both types can be accounted for with simple models.

Fig. 1.

negative real parts [13]. This additional constraint is usually
restrictive enough to remove all but one of the solutions to (3).
Limited space in this paper does not permit elaboration on the
important topic of mode stability, and this will be discussed
in a future paper. The above analysis is sufficient for what
follows.

III. COUPLING MECHANISMS AND MEASUREMENT

From (2) it is clear that both the magnitude and phase of
the coupling coefficient, ;;, will have an important influence
on the phase dynamics of the system. In a typical oscillator
array this mutual coupling can take several forms. Two of
these are almost always present in planar radiating arrays:
free-space interactions, and coupling through surface-waves
propagating in the dielectric substrate (Fig. 1(a)). The latter
is significant for electrically thick substrates. These radiative
coupling mechanisms have been characterized both theoreti-
cally and experimentally for many types of planar radiators,
such as the patch antenna [14]-[15]. The strength and phase of
this interaction is a strong function of the element separation.
This is not always desirable in an oscillator array, since the
element spacing also determines the radiation pattern of the
array and hence cannot be set arbitrarily.

Another important situation is depicted in Fig. 1(b), where
the array is placed in an open quasi-optical cavity. Open
resonators can have very high Q-factors, and hence are useful
for frequency stabilization. The particular cavity shown in
Fig. 1(b) is created by the partially reflecting mirror (such
as a dielectric sheet) and the ground plane of the array. The
individual oscillators couple to a set of cavity modes, which
are the vehicle for interaction [1]. This type of coupling can
thus be controlled by the reflectivity, shape, and position of the
mirror. Alternative coupling schemes can also be used, such as
a planar transmission-line circuit for adjacent oscillators. The
laiter is a more flexible design alternative than the proximity
coupling scheme, however it may be undesirabie if substrate
real-estate is scarce. In the remainder of this paper we restrict
our attention to the radiative coupling schemes shown in Fig. 1.

An elegantly simple technique has in fact already been
described for the experimental characterization of free-space
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Fig. 2. Setup for coupling measurements. A vertical ground plane images a
single oscillator, simulating two identical coupled oscillators. The oscillation
frequency is then monitored while the metal sheet is moved away from the
oscillator. This shift is related to the coupling coefficient in (7).

E-plane Coupling H-plane Coupling

«— Ground plane ~———_

—— E . : T z 5 :I
e ' R
oscillator image 0 [ =
oscillator image

Fig. 3. Tllustration of the imaging of an oscillator in the two principal

radiation planes, for linearly polarized antennas. The arrow indicate the
direction of current on the planar antennas.

oscillator coupling [16]. As shown in Fig. 2, a single planar
oscillator is imaged by a ground plane, thus simulating two
identical, coupled oscillators. The coupling is controlled by
adjusting the spacing between the oscillator and the mirror.
As the mirror position is changed, the output frequency of
the system also changes, and this frequency shift can be
related to the coupling coefficient through equations (3). For
two identical, frequency-locked oscillators (i.e., w; = ws =
wo,Al = Az) with K91 — K1z = /\exp(—j@) and K11 =
Koo = 0, (3) gives, in the steady-state,

wzwo[l— é%sin(tI'—I-Aqﬁ)]
W =Wy {1 - é% sin (& — Ag{))] (6)

where A¢ = ¢5 — ¢1, the relative phase difference between
the two oscillators. Depending on the orientation of the two
oscillators, either in-phase or out-phase oscillators are simu-
lated in this technique, as illustrated in Fig. 3 for an oscillator
with a linearly polarized antenna. For both cases, either of
equations (6) can be used to get
Af _ +X'(z) sin ®(z) ¢
Jo
where X = A/2Q and Af = f — fo. The frequency shift is
thus a function of the coupling coefficient only, which in turn is
a function of the oscillator separation z as indicated in (7). The
plus-sign applies for H-plane coupling (A¢ = =), while the

50 T[T T T T T T T T

40 H-plane Coupling 1
N i
T 30 f =10.845 GHz 7
= r 0 1
- 20} -
= L ]
g or : ]
& of i "
& 10k : ; ]
& Lol oo ’
3 20 [ ‘ —
T - H Measured 1
£ s0p :
w F v mmmeees Theory 1

t
-40 ; =
PN AT S A P S I
0.0 1.0 2.0 3.0 4.0 5.0
Element Separation, x/A
@
50 (T[T T T T T T T
40

E-plane Coupling
fo=10.982 GHz

Frequency Shift, Af, MHz
S

(%]
o
LRI DL B UL L LA LA LN AN R B
P AT A P I S I S P

1 IOl S ST S S NV ST S S B U
0.0 1.0 2.0 3.0 4.0 5.0

Element Separation, x/A
(b)

Fig. 4. Measured frequency shift versus oscillator separation (in wave-
lengths) for (a) H-plane coupling, and (b) E-plane coupling. An X -band Gunn
diode/patch antenna oscillator was used. The theory curve is calculated using
the simple model (8) as described in the text.

minus-sign applies for E-plane coupling (A¢ = 0). Equation
(7) is similar in form to (9) in [21], which was derived by
other methods.

Two typical experimental results are shown in Fig. 4 for an
active patch antenna with an integrated X-band Gunn diode

. [6], [16]. In each of the graphs a theoretical curve has been

plotted for comparison. These have been calculated using a
simple model in which the coupling signal is described by the
far-field approximation for the antenna. In this approximation
the field strength is proportional to 1/r, where r is the distance
from the antenna. The phase of the signal is calculated using
the free-space propagation constant, kg = wp/c, where c is the
speed of light. Near-field effects can be partially accounted
for with an additional phase term, ¢, which is empirically
determined [21]. If x is taken as the oscillator separation, this
simple model for the free-space coupling is written as

N(z) = i

d
Fot an

D(z) = kox + ¢ 8)
where C and ¢ are fitted parameters and are dependent on the
polarization of the coupling. For our active patch design, the
experimental curves in Fig. 4 were found to be well described
by

C=0013 ¢ =60°
C=0010 ¢=—80°

E — plane:
H — plane:
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This simple model appears to work quite well for element
spacings of a half-wavelength or more (a similar conclusion
was reached in [21]). Note also that for typical array spacings
of x < A, the measurements indicate that significant mutual
coupling will exist beyond nearest neighbors. However, it is
possible that the nearest neighbors could effectively screen out-
lying oscillators and reduce this influence. Thus far, theoretical
predictions based on nearest-neighbor coupling have compared
very favorably with array measurements; these results will be
presented in a future paper.

The excellent agreement for the simple model above sug-
gests that a similar description of the coupling due to a
partially reflecting mirror might be possible. In this case, the
interaction is modelled as a simple plane-wave reflection from
the mirror, which is governed by the Fresnel equations [18].
This is depicted by arrows in Fig. 1(b) for a flat sheet reflector
(multiple reflections are ignored). If we define the path length
[ = 24/d?+ (2/2)%, where d is the distance between the
reflector and the oscillator array, then the simple coupling
model is

N(z,d) = ——-———CIF(ng(e)l and

®(x,d) = kol + o + LT(6) ©)

where I'(#) is the complex reflection coefficient of the re-
flector, which is a function of the angle of incidence 6 =
tan~!(z/2d) as well as the orientation of the oscillators
(polarization of the field). G(#) is the relevant gain function
(E- or H-plane) of the antenna. Again, C and ¢ are empirically
determined quantities. A corollary of this model is that each
oscillator will also receive a portion of its own output signal,
which is reflected directly back from the mirror, Such “self-
injection-locking” is governed by Adler’s equation [19], which
reduces to an equation of the form (7). This self-interaction
term is modelled by a nonzero «;;, which we allowed for in
writing (2).

To explore the validity of this approach, experiments were
performed using a single active patch oscillator, with a 1
inch thick dielectric sheet reflector (e, = 4.0) mounted on
an adjustable stand above the array. A typical measurement
of the frequency variation versus reflector position for an
X-band oscillator is shown in Fig. 5. The theory curve is
calculated using the simple model (9), with x = § = 0,
and follows the measurements surprisingly well. This is a
useful result, considering the alternative methods for modelling
the effects of external reflectors. Rigorously, the presence
of the reflector affects the driving-point impedance of the
antenna, and this in turn forces a change in the oscillator
frequency. This driving point impedance can be calculated by
a straightforward but lengthy and computationally expensive
mode-matching procedure [1]. The simple model presented
here will be especially useful in computer simulations of array
dynamics, where computational efficiency is important.

In summary, mutual coupling in oscillator arrays with
the (optional) presence of a reflector can be modelled as
a superposition of three effects: a direct signal from the
neighboring oscillator (8), a signal from the neighbor due
to the reflector (9), and the self-injection-locking described

30 T T
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Fig. 5. Frequency shift as a dielectric slab (1 thick, ¢, = 4) is moved above
a Gunn/patch oscillator operating at 7.635 GHz. The effects of the reflector can
be described by including a “self-interaction” term in the coupled-oscillator
theory, and can be modelled by a simple expression.

above. Depending on the particular reflector used and/or the
proximity of neighboring oscillators, one of these effects may
dominate the others.

IV. Two COUPLED, NONIDENTICAL OSCILLATORS

The simplest application of the coupled-oscillator theory and
coupling models described above is for the case of two coupled
oscillators. This is also one of the few situations in which an
exact analytical result can be found, and has been considered
by various authors using many different techniques [21]-[23].
We will consider two oscillators which interact by direct, free-
space mechanisms, as described by (8). Two simultaneous
equations must be solved, which are found from (3) as

w=w [1 - )\’&sin(i) - Ad))]
A
/Al .
w =wy [1 — XN ==sin(® + A(b)} (10)
Ay

The steady-state phase-shift which satisfies (10} is found as

a++va?+b - Aw?
b+ Aw

A¢ = 2tan™? (11)

where

a =X cos @(WQAl/AQ + wlAz/Al)
b= )\l sin (I)(WZAl/Az - wlAz/Al

and thus there are two possible solutions for this system. The
solutions of (10) are subject to the stability condition

wgﬂ cos(® + A¢)
Ay
Az
+ w1~ cos (®— Ad)| >0 (12)
1

and this determines the proper sign in (11). The synchronized
frequency can then be found by substituting back into (10).
In the case of instantaneous coupling (® = 0) this equation
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Fig. 6. A selection of radiation patterns for the two-oscillator system, with different oscillator separations. (a) * = 15 mm, (b) x = 30 mm, () z = 45 mm,
and (d) * = 60 mm. Solid line is the measured pattern, and the dotted line is theory. The oscillators had measured free-running frequencies of approximately
10.8 GHz, and similar amplitudes. Good agreement in the placement of lobes and nulls indicate an accurate prediction of the phase shift.

reduces to

which is the same result derived previously by Kaplan and
Radparvar [22].

To illustrate the behaviour of the system, consider the
case of two oscillators with identical free-running parameters,
w1 = wg and A; = As. Equations (11) and (12) become

cosPsinAg =0 and
cosPcosAgp >0

giving the solution

Agp = 0, —7w/2<®<xw/2
T wm m/2< P < 37n/2

and thus the two modes of operation are either in-phase or out-
of-phase. This would be clearly evident from a measurement
of the radiation pattern.

This theory was tested with a two-oscillator array, using
an X -band active patch oscillator as described previously.
The first step involved an experimental determination of the

parameters C' and ¢ in (8). The oscillators were then mounted
on adjustable carrier so that the spacing and hence coupling
could be continuously varied. The array was constructed
for H-plane coupling. Several radiation pattern measurements
were performed for different element spacings, and a few
of these are shown in Fig. 6. The measurements support
the theoretical observation of two distinct modes, which are
approximately in-phase or out-of-phase. For each case the free-
running parameters of each oscillator were carefully measured,
and this information, along with the coupling model (8), was
used to predict the final frequency and phase shift. Theoretical
radiation patterns have been plotted for comparison in Fig.
6, with excellent agreement theory and experiment regarding
the number and placement of lobes and nulls. Discrepancies
in magnitude, especially at large angles from broadside, are a
result of using a simplified patch antenna radiation model [20]
for the theoretical pattern.

The measured radiation patterns were used to find the
actual phase shift between the oscillators, and the differences
between theory and experiment for all of the measurements
has been plotted versus oscillator spacing in Fig. 7. The
differences between theory and experiment for the oscillation
frequency are also shown. This figure clearly shows that the
simple coupling model (8) and the oscillator array theory
(2) accurately describe the physical situation, except at small
element separations. At such small element spacings, the far-
field approximation used in (8), and the assumption of weak
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Fig.7. Comparison of theory and experiment for both frequency and phase in
the two oscillator system. Solid dots indicate the magnitude of the difference
between theoretical and experimental phase shifts. Open triangles indicate
the percent discrepancy between predicted and measured output frequency
of the system. Good agreement is observed for spacings on the order of a
half-wavelength or more.

coupling used in (2), are no longer valid. In such cases the
coupling parameters can be found empirically, and oscillator
amplitude dynamics must be accounted for [9].

V. CONCLUSIONS

A successful theory of coupled-oscillator arrays relies on
a description of both the individual oscillators and the me-
chanics of interelement coupling. Using a theory based on
the Van der Pol oscillator and a previously described imaging
technique, mutual coupling between microwave oscillators can
be experimentally determined. It was found that a very simple
model for direct, radiative coupling between oscillators can
be fitted to experimental data, and that subsequent predictions
based on this model are accurate for oscillator separations of a
half-wavelength or more. This model was extended to account
for the external reflecting elements which are sometimes
used in quasi-optical cavities. This led to the introduction
of a “self-interaction” term, which accounts for the effects
of the reflector on a single oscillator. The coupled-oscillator
theory and radiative models were tested with two nonidentical
oscillators, and very good agreement was observed between
theory and experiment. The models developed here will be
instrumental in future simulations of large array dynamics,
where computational efficiency is paramount.
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